منابع مشابه
Approximate Inference for Robust Gaussian Process Regression
Gaussian process (GP) priors have been successfully used in non-parametric Bayesian regression and classification models. Inference can be performed analytically only for the regression model with Gaussian noise. For all other likelihood models inference is intractable and various approximation techniques have been proposed. In recent years expectation-propagation (EP) has been developed as a g...
متن کاملRobust Gaussian Process Regression with a Student-t Likelihood
This paper considers the robust and efficient implementation of Gaussian process regression with a Student-t observation model, which has a non-log-concave likelihood. The challenge with the Student-t model is the analytically intractable inference which is why several approximative methods have been proposed. Expectation propagation (EP) has been found to be a very accurate method in many empi...
متن کاملCan Gaussian Process Regression Be Made Robust Against Model Mismatch?
Learning curves for Gaussian process (GP) regression can be strongly affected by a mismatch between the ‘student’ model and the ‘teacher’ (true data generation process), exhibiting e.g. multiple overfitting maxima and logarithmically slow learning. I investigate whether GPs can be made robust against such effects by adapting student model hyperparameters to maximize the evidence (data likelihoo...
متن کاملHierarchical Gaussian Process Regression
We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics Supplement
سال: 2005
ISSN: 0375-9687
DOI: 10.1143/ptps.157.280